Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.22.521642

ABSTRACT

SARS-CoV-2 Spike harbors glycans which function as ligands for lectins. Therefore, it should be possible to exploit lectins to target SARS-CoV-2 and inhibit cellular entry by binding glycans on the Spike protein. Burkholderia oklahomensis agglutinin (BOA) is an antiviral lectin that interacts with viral glycoproteins via N-linked high mannose glycans. Here, we show that BOA binds to the Spike protein and is a potent inhibitor of SARS-CoV-2 viral entry at nanomolar concentrations. Using a variety of biophysical tools, we demonstrate that the interaction is avidity driven and that BOA crosslinks the Spike protein into soluble aggregates. Furthermore, using virus neutralization assays, we demonstrate that BOA effectively inhibits all tested variants of concern as well as SARS-CoV 2003, establishing that glycan-targeting molecules have the potential to be pan-coronavirus inhibitors.


Subject(s)
Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434840

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Lymphoma, B-Cell , Leber Congenital Amaurosis
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.23.432569

ABSTRACT

Globally there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals weight loss post-infection and decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology and prevents viral pneumonia. Combined with the marked stability and low production cost, this novel therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.19.389916

ABSTRACT

Zoonotic pandemics follow the spillover of animal viruses into highly susceptible human populations. Often, pandemics wane, becoming endemic pathogens. Sustained circulation requires evasion of protective immunity elicited by previous infections. The emergence of SARS-CoV-2 has initiated a global pandemic. Since coronaviruses have a lower substitution rate than other RNA viruses this gave hope that spike glycoprotein is an antigenically stable vaccine target. However, we describe an evolutionary pattern of recurrent deletions at four antigenic sites in the spike glycoprotein. Deletions abolish binding of a reported neutralizing antibody. Circulating SARS-CoV-2 variants are continually exploring genetic and antigenic space via deletion in individual patients and at global scales. In viruses where substitutions are relatively infrequent, deletions represent a mechanism to drive rapid evolution, potentially promoting antigenic drift.

5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.19.154930

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged at the end of 2019 and by mid-June 2020, the virus has spread to at least 215 countries, caused more than 8,000,000 confirmed infections and over 450,000 deaths, and overwhelmed healthcare systems worldwide. Like SARS-CoV, which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low passage (P) strains of SARS-CoV-2 (Wash1: P4 and Munich: P1) were cultured twice in Vero-E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1: P6 and minor variants in the Munich: P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero-E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies we investigated the development of neutralizing antibody titers in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL